Virus Research (Apr 2024)
Comprehensive phytohormone metabolomic and transcriptomic analysis of tobacco (Nicotiana tabacum) infected by tomato spotted wilt virus (TSWV)
Abstract
Tomato spotted wilt virus (TSWV) is ranked among the top 10 most destructive viruses globally. It results in abnormal leaf growth, stunting, and even death, significantly affecting crop yield and quality. Phytohormones play a crucial role in regulating plant-virus interactions. However, there is still limited research on the effect of TSWV on phytohormone levels, particularly growth hormones and genes involved in the phytohormone pathway. In our study, we combined phytohormone metabolomics and transcriptomics to examine the impact of TSWV infection on phytohormone content and gene expression profile. Metabolomic results showed that 41 metabolites, including major phytohormones and their precursors and derivatives were significantly altered after 14 days of TSWV inoculation tobacco plants cvK326, with 31 being significantly increased and 10 significantly reduced. Specifically, the levels of abscisic acid (ABA) and jasmonoyl-isoleucine (JA-Ile) were significantly reduced. The levels of indole-3-acetic acid (IAA) have remained unchanged. However, the levels of cytokinin isopentenyladenine (iP) and salicylic acid (SA) significantly increased. The transcriptome analysis revealed 2,746 genes with significant changes in expression. Out of these, 1,072 genes were significantly downregulated, while 1,674 genes were significantly upregulated. Among them, genes involved in ABA synthesis and signaling pathways, such as 9-cis-epoxycarotenoid dioxygenase (NCED), protein phosphatase 2C (PP2C), serine/threonine-protein kinase (SnRK2), and abscisic acid responsive element binding factor (ABF), exhibited significant downregulation. Additionally, expression of the lipoxygenase gene LOX, Jasmonate ZIM domain-containing protein gene JAZ, and transcription factor gene MYC were significantly down-regulated. In the cytokinin pathway, while there were no significant changes in the expression of the cytokinin synthesis genes, a significant downregulation of transcriptionally active factor type-B response regulators (type-B RRs) was observed. In terms of SA synthesis and signaling pathways, the isochorismate synthase gene ICS1 and the pathogenesis-related gene PR1 were significantly upregulated. These results can strengthen the theoretical foundation for understanding the interaction between TSWV and tobacco and provide new insights for the future prevention and control of TSWV.