Biosensors (Jun 2022)

Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring

  • Debarshi Bhattacharya,
  • Deepak Sharma,
  • Wonjoon Kim,
  • Muhammad Fazal Ijaz,
  • Pawan Kumar Singh

DOI
https://doi.org/10.3390/bios12060393
Journal volume & issue
Vol. 12, no. 6
p. 393

Abstract

Read online

Biomedical images contain a huge number of sensor measurements that can provide disease characteristics. Computer-assisted analysis of such parameters aids in the early detection of disease, and as a result aids medical professionals in quickly selecting appropriate medications. Human Activity Recognition, abbreviated as ‘HAR’, is the prediction of common human measurements, which consist of movements such as walking, running, drinking, cooking, etc. It is extremely advantageous for services in the sphere of medical care, such as fitness trackers, senior care, and archiving patient information for future use. The two types of data that can be fed to the HAR system as input are, first, video sequences or images of human activities, and second, time-series data of physical movements during different activities recorded through sensors such as accelerometers, gyroscopes, etc., that are present in smart gadgets. In this paper, we have decided to work with time-series kind of data as the input. Here, we propose an ensemble of four deep learning-based classification models, namely, ‘CNN-net’, ‘CNNLSTM-net’, ‘ConvLSTM-net’, and ‘StackedLSTM-net’, which is termed as ‘Ensem-HAR’. Each of the classification models used in the ensemble is based on a typical 1D Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network; however, they differ in terms of their architectural variations. Prediction through the proposed Ensem-HAR is carried out by stacking predictions from each of the four mentioned classification models, then training a Blender or Meta-learner on the stacked prediction, which provides the final prediction on test data. Our proposed model was evaluated over three benchmark datasets, WISDM, PAMAP2, and UCI-HAR; the proposed Ensem-HAR model for biomedical measurement achieved 98.70%, 97.45%, and 95.05% accuracy, respectively, on the mentioned datasets. The results from the experiments reveal that the suggested model performs better than the other multiple generated measurements to which it was compared.

Keywords