Thermo (Aug 2021)

Thermodynamic Assessment of the AF–CrF<sub>3</sub> (A = Li, Na, K) and CrF<sub>2</sub>–CrF<sub>3</sub> Systems

  • Thomas Dumaire,
  • Rudy J. M. Konings,
  • Anna Louise Smith

DOI
https://doi.org/10.3390/thermo1020014
Journal volume & issue
Vol. 1, no. 2
pp. 205 – 219

Abstract

Read online

Understanding the corrosion mechanisms and the effect of corrosion products on the basic properties of the salt (e.g., melting point, heat capacity) is fundamental for the safety assessment and durability of molten salt reactor technology. This work focused on the thermodynamic assessment of the CrF2−CrF3 system and the binary systems of chromium trifluoride CrF3 with alkali fluorides (LiF, NaF, KF) using the CALPHAD (computer coupling of phase diagrams and thermochemistry) method. In this work, the modified quasi-chemical model in the quadruplet approximation was used to develop new thermodynamic modelling assessments of the binary solutions, which are highly relevant in assessing the corrosion process in molten salt reactors. The agreement between these assessments and the phase equilibrium data available in the literature is generally good. The excess properties (mixing enthalpies, entropies and Gibbs energies) calculated in this work are consistent with the expected behaviour of decreasing enthalpy and Gibbs energy of mixing with the increasing ionic radius of the alkali cations.

Keywords