Biochemistry and Biophysics Reports (Jul 2020)

Activation of sarcolipin expression and altered calcium cycling in LMNA cardiomyopathy

  • Blanca Morales Rodriguez,
  • Alejandro Domínguez-Rodríguez,
  • Jean-Pierre Benitah,
  • Florence Lefebvre,
  • Thibaut Marais,
  • Nathalie Mougenot,
  • Philippe Beauverger,
  • Gisèle Bonne,
  • Véronique Briand,
  • Ana-María Gómez,
  • Antoine Muchir

Journal volume & issue
Vol. 22

Abstract

Read online

Cardiomyopathy caused by A-type lamins gene (LMNA) mutations (LMNA cardiomyopathy) is associated with dysfunction of the heart, often leading to heart failure. LMNA cardiomyopathy is highly penetrant with bad prognosis with no specific therapy available. Searching for alternative ways to halt the progression of LMNA cardiomyopathy, we studied the role of calcium homeostasis in the evolution of this disease. We showed that sarcolipin, an inhibitor of the sarco/endoplasmic reticulum (SR) Ca2+ ATPase (SERCA) was abnormally elevated in the ventricular cardiomyocytes of mutated mice compared with wild type mice, leading to an alteration of calcium handling. This occurs early in the progression of the disease, when the left ventricular function was not altered. We further demonstrated that down regulation of sarcolipin using adeno-associated virus (AAV) 9-mediated RNA interference delays cardiac dysfunction in mouse model of LMNA cardiomyopathy. These results showed a novel role for sarcolipin on calcium homeostasis in heart and open perspectives for future therapeutic interventions to LMNA cardiomyopathy.

Keywords