Energies (Sep 2022)

Dispersion of the Thermodynamically Immiscible Polypropylene and Ethylene—Propylene Triple Synthetic Rubber Polymer Blends Using Supercritical SEDS Process: Effect of Operating Parameters

  • Vener F. Khairutdinov,
  • Ilnar S. Khabriev,
  • Farid M. Gumerov,
  • Rafail M. Khuzakhanov,
  • Ruslan M. Garipov,
  • Talgat R. Akhmetzyanov,
  • Azat N. Ibatullin,
  • Ilmutdin M. Abdulagatov

DOI
https://doi.org/10.3390/en15176432
Journal volume & issue
Vol. 15, no. 17
p. 6432

Abstract

Read online

In this paper, we present the results of dispersion of thermodynamically immiscible polypropylene (PP) and ethylene-propylene triple synthetic rubber (EPTSR) polymer blends using the Solution-Enhanced Dispersion by Supercritical Fluid (SEDS) technique at operation conditions in the pressure range of (8 to 25) MPa and at temperatures t = 40 °C and 60 °C. The kinetics of crystallization and phase transformation in polymer blends obtained by conventional method (melt blending) and by mixing in the SEDS process have been studied using the DSC technique. The effects of the SEDS operation process on the physical—chemical (melting temperature, heat of fusion) and mechanical (microparticle size) characteristics of the SEDS-produced polymer blends were studied.

Keywords