Improved Method for Dental Pulp Stem Cell Preservation and Its Underlying Cell Biological Mechanism
Mai Takeshita-Umehara,
Reiko Tokuyama-Toda,
Yusuke Takebe,
Chika Terada-Ito,
Susumu Tadokoro,
Akemi Inoue,
Kohei Ijichi,
Toshio Yudo,
Kazuhito Satomura
Affiliations
Mai Takeshita-Umehara
Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
Reiko Tokuyama-Toda
Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
Yusuke Takebe
Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
Chika Terada-Ito
Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
Susumu Tadokoro
Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
Akemi Inoue
Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
Kohei Ijichi
Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
Toshio Yudo
Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
Kazuhito Satomura
Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Kanagawa, Japan
Dental pulp stem cells (DPSCs) are considered a valuable cell source for regenerative medicine because of their high proliferative potential, multipotency, and availability. We established a new cryopreservation method (NCM) for collecting DPSCs, in which the tissue itself is cryopreserved and DPSCs are collected after thawing. We improved the NCM and developed a new method for collecting and preserving DPSCs more efficiently. Dental pulp tissue was collected from an extracted tooth, divided into two pieces, sandwiched from above and below using cell culture inserts, and cultured. As a result, the cells in the pulp tissue migrated vertically over time and localized near the upper and lower membranes over 2–3 days. With regard to the underlying molecular mechanism, SDF1 was predominantly involved in cell migration. This improved method is valuable and enables the more efficient collection and reliable preservation of DPSCs. It has the potential to procure a large number of DPSCs stably.