Frontiers in Microbiology (Jan 2023)

Anti-microbial, anti-oxidant, and anti-breast cancer properties unraveled in yeast carotenoids produced via cost-effective fermentation technique utilizing waste hydrolysate

  • Sweta Sinha,
  • Souvik Das,
  • Biswajit Saha,
  • Debarati Paul,
  • Biswarup Basu

DOI
https://doi.org/10.3389/fmicb.2022.1088477
Journal volume & issue
Vol. 13

Abstract

Read online

IntroductionNatural carotenoids are well known for their anti-oxidant property and also shown to have antimicrobial and anticancer efficacy. Production of carotenoids from microbial resources mainly from yeast has attracted commercial interest. Breast cancer has the highest incidence among women, and therapy resistance and lack of effective therapeutic strategies are major treatment bottlenecks, particularly for triple-negative subtypes. Yeast carotenoids are recently being evaluated for affordable, non-toxic, natural product-based therapies. In the present study, we have shown an environment-friendly and inexpensive method for carotenoid production from yeasts, utilizing “mandi” wastes, and investigated the biomedical properties of carotenoids, particularly antineoplastic properties.MethodsVegetable “mandi” waste was used to prepare waste hydrolysate, a culture medium, in which oleaginous red yeast Rhodosporidium sp. was grown. Carotenoid pigments were extracted using the solvent extraction method and analyzed by UV spectroscopy, thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC). Antimicrobial, antioxidant, and anticancer activities of the extract were evaluated, followed by in silico docking and absorption, distribution, metabolism, and excretion/toxicity (ADME/T) studies.ResultsCarotenoid extract was found to be composed of three main pigments-β-carotene, torulene, and torularhodin. Extract exhibited significant antioxidant, antimicrobial, and anti-breast cancer activities in vitro while being biocompatible. Interestingly, carotenoids have shown better efficacy in triple-negative breast cancer (TNBC) cells than ER+PR+ cells. In silico evaluation predicted binding with breast cancer-specific molecular targets, specifically the three components showed good binding energy toward VEGF receptors and good drug likeliness properties, as well as less toxicity.DiscussionThis is the first report on anti-breast cancer activities, particularly targeting TNBC cells by red yeast carotenoids (β-carotene, torulene, and torularhodin) produced via a sustainable environment-friendly bioprocess utilizing waste hydrolysate.

Keywords