Molecules (Nov 2018)

Synthesis of Pyridazine Derivatives by Suzuki-Miyaura Cross-Coupling Reaction and Evaluation of Their Optical and Electronic Properties through Experimental and Theoretical Studies

  • Sara S. M. Fernandes,
  • João Aires-de-Sousa,
  • Michael Belsley,
  • M. Manuela M. Raposo

DOI
https://doi.org/10.3390/molecules23113014
Journal volume & issue
Vol. 23, no. 11
p. 3014

Abstract

Read online

A series of π-conjugated molecules, based on pyridazine and thiophene heterocycles 3a⁻e, were synthesized using commercially, or readily available, coupling components, through a palladium catalyzed Suzuki-Miyaura cross-coupling reaction. The electron-deficient pyridazine heterocycle was functionalized by a thiophene electron-rich heterocycle at position six, and different (hetero)aromatic moieties (phenyl, thienyl, furanyl) were functionalized with electron acceptor groups at position three. Density Functional Theory (DFT) calculations were carried out to obtain information on the conformation, electronic structure, electron distribution, dipolar moment, and molecular nonlinear response of the synthesized push-pull pyridazine derivatives. Hyper-Rayleigh scattering in 1,4-dioxane solutions, using a fundamental wavelength of 1064 nm, was used to evaluate their second-order nonlinear optical properties. The thienylpyridazine functionalized with the cyano-phenyl moiety exhibited the largest first hyperpolarizability (β = 175 × 10−30 esu, using the T convention) indicating its potential as a second harmonic generation (SHG) chromophore.

Keywords