International Journal of Nanomedicine (Jun 2018)

Development of a thermostable nanoemulsion adjuvanted vaccine against tuberculosis using a design-of-experiments approach

  • Kramer RM,
  • Archer MC,
  • Orr MT,
  • Dubois Cauwelaert N,
  • Beebe EA,
  • Huang PWD,
  • Dowling QM,
  • Schwartz AM,
  • Fedor DM,
  • Vedvick TS,
  • Fox CB

Journal volume & issue
Vol. Volume 13
pp. 3689 – 3711

Abstract

Read online

Ryan M Kramer, Michelle C Archer, Mark T Orr, Natasha Dubois Cauwelaert, Elyse A Beebe, Po-wei D Huang, Quinton M Dowling, Alicia M Schwartz, Dawn M Fedor, Thomas S Vedvick, Christopher B Fox Infectious Disease Research Institute, Seattle, WA, USA Background: Adjuvants have the potential to increase the efficacy of protein-based vaccines but need to be maintained within specific temperature and storage conditions. Lyophilization can be used to increase the thermostability of protein pharmaceuticals; however, no marketed vaccine that contains an adjuvant is currently lyophilized, and lyophilization of oil-in-water nanoemulsion adjuvants presents a specific challenge. We have previously demonstrated the feasibility of lyophilizing a candidate adjuvanted protein vaccine against Mycobacterium tuberculosis (Mtb), ID93 + GLA-SE, and the subsequent improvement of thermostability; however, further development is required to prevent physicochemical changes and degradation of the TLR4 agonist glucopyranosyl lipid adjuvant formulated in an oil-in-water nanoemulsion (SE). Materials and methods: In this study, we took a systematic approach to the development of a thermostable product by first identifying compatible solution conditions and stabilizing excipients for both antigen and adjuvant. Next, we applied a design-of-experiments approach to identify stable lyophilized drug product formulations. Results: We identified specific formulations that contain disaccharide or a combination of disaccharide and mannitol that can achieve substantially improved thermostability and maintain immunogenicity in a mouse model when tested in accelerated and real-time stability studies. Conclusion: These efforts will aid in the development of a platform formulation for use with other similar vaccines. Keywords: adjuvant, lyophilization, tuberculosis, formulation development, design of experiments, controlled temperature chain, GRAS

Keywords