Oceanography (Jan 2010)

Monitoring Ocean Currents with Satellite Sensors

  • Kathleen Dohan,
  • Nikolai Maximenko

Journal volume & issue
Vol. 23, no. 4
pp. 94 – 103

Abstract

Read online

The interconnected ocean surface current system involves multiple scales, including basin-wide gyres, fast narrow boundary currents, eddies, and turbulence. To understand the full system requires measuring a range of motions, from thousands of kilometers to less than a meter, and from climate time scales (decades) to daily processes. Presently, satellite systems provide us with global and regional maps of the ocean surface’s mesoscale motion (larger than 100 km). Surface currents are measured indirectly from satellite systems. One method involves using remotely sensed fields of sea surface height, surface winds, and sea surface temperature within a physical model to produce currents. Another involves determining surface velocity from paths of drifting surface buoys transmitted to satellite sensors. Additional methods include tracking of surface features and exploitation of the Doppler shift in radar fields. The challenges for progress include measuring small and fast processes, capturing the vertical variation, and overcoming sensor limitations near coasts. Here, we detail the challenges as well as upcoming missions and advancements in satellite oceanography that will change our understanding of surface currents in the next 10 years.

Keywords