Micromachines (Nov 2023)

Study on the Influence of Coil Arrangement on the Output Characteristics of Electromagnetic Galloping Energy Harvester

  • Lei Xiong,
  • Shiqiao Gao,
  • Lei Jin,
  • Yaoqiang Sun,
  • Xueda Du,
  • Feng Liu

DOI
https://doi.org/10.3390/mi14122158
Journal volume & issue
Vol. 14, no. 12
p. 2158

Abstract

Read online

The arrangement of the induction coil influences the electromagnetic damping force and output characteristics of electromagnetic energy harvesters. Based on the aforementioned information, this paper presents a proposal for a multiple off-center coil electromagnetic galloping energy harvester (MEGEH). This study establishes both a theoretical model and a physical model to research the influence of the position and quantity of the induction coils on the output characteristics of an energy harvester. Additionally, it conducts wind tunnel tests and analyzes the obtained results. With the increase in the number of induction coils, there is a significant improvement in the duty cycle and output power of the MEGEH, resulting in an amplified energy conversion efficiency. At a wind speed of 9 m/s, the duty ratios of a single set of coils (SC), two sets of coils (TC), and multiple sets of coils (MC) are 30%, 51%, and 100%, respectively. The total output powers are 0.4 mW, 0.62 mW, and 0.72 mW. However, the rate of output growth has decreased from 55% to 16%. The position of the coils affects the initial electromagnetic damping of the energy harvester. Changing the position can reduce the initial electromagnetic damping, thereby decreasing the critical wind speed. The critical wind speed of the MEGEH decreases as the induction coil is positioned further away from the vibration center. When the distance is sufficiently large, the electromagnetic damping force becomes negligible. When the induction coil is positioned centrally, the MEGEH demonstrates its maximum critical wind speed, which has been measured at 4.01 m/s. When the initial distance between the induction coil and the vibrating component is increased to 10 mm, the critical wind speed reaches its minimum value of 2.23 m/s. Therefore, it is necessary to optimize the arrangement of the coils. The coils of the MEGEH should be arranged with the MC and a 10 mm offset from the center.

Keywords