Brain Sciences (Feb 2020)

Enhancing α-secretase Processing for Alzheimer’s Disease—A View on SFRP1

  • Bor Luen Tang

DOI
https://doi.org/10.3390/brainsci10020122
Journal volume & issue
Vol. 10, no. 2
p. 122

Abstract

Read online

Amyloid β (Aβ) peptides generated via sequential β- and γ-secretase processing of the amyloid precursor protein (APP) are major etiopathological agents of Alzheimer’s disease (AD). However, an initial APP cleavage by an α-secretase, such as the a disintegrin and metalloproteinase domain-containing protein ADAM10, precludes β-secretase cleavage and leads to APP processing that does not produce Aβ. The latter appears to underlie the disease symptom-attenuating effects of a multitude of experimental therapeutics in AD animal models. Recent work has indicated that an endogenous inhibitor of ADAM10, secreted-frizzled-related protein 1 (SFRP1), is elevated in human AD brains and associated with amyloid plaques in mouse AD models. Importantly, genetic or functional attenuation of SFRP1 lowered Aβ accumulation and improved AD-related histopathological and neurological traits. Given SFRP1′s well-known activity in attenuating Wnt signaling, which is also commonly impaired in AD, SFRP1 appears to be a promising therapeutic target for AD. This idea, however, needs to be addressed with care because of cancer enhancement potentials resulting from a systemic loss of SFRP1 activity, as well as an upregulation of ADAM10 activity. In this focused review, I shall discuss α-secretase-effected APP processing in AD with a focus on SFRP1, and explore the contrasting perspectives arising from the recent findings.

Keywords