Mathematical Biosciences and Engineering (Mar 2022)
A stochastic mussel-algae model under regime switching
Abstract
We investigate a novel model of coupled stochastic differential equations modeling the interaction of mussel and algae in a random environment, in which combined effect of white noises and telegraph noises formulated under regime switching are incorporated. We derive sufficient condition of extinction for mussel species. Then with the help of stochastic Lyapunov functions, a well-grounded understanding of the existence of ergodic stationary distribution is obtained. Meticulous numerical examples are also employed to visualize our theoretical results in detail. Our analytical results indicate that dynamic behaviors of the stochastic mussel-algae model are intimately associated with two kinds of random perturbations.
Keywords