Acta Biochimica et Biophysica Sinica (Oct 2022)

Triple kill: DDR inhibitors, radiotherapy and immunotherapy leave cancer cells with no escape

  • Qiu Yuyue,
  • Hu Xinru,
  • Zeng Xiaoping,
  • Wang Hongmei

DOI
https://doi.org/10.3724/abbs.2022153
Journal volume & issue
Vol. 54
pp. 1569 – 1576

Abstract

Read online

Radiotherapy (RT) has been widely used in the clinical treatment of cancers, but radiotherapy resistance (RR) leads to RT failure, tumor recurrence and metastasis. Many studies have been performed on the potential mechanisms behind RR, and a strong link has been found between RR and DNA damage. RT-induced DNA damage triggers a protective mechanism called the DNA damage response (DDR). DDR consists of several aspects, including the detection of DNA damage and induction of cell cycle checkpoint, DNA repair, and eventual induction of cell death. A large number of studies have shown that DDR inhibition leads to significantly enhanced sensitivity of cancer cells to RT. DDR may be an effective target for radio- and chemo-sensitization during cancer treatment. Therefore, many inhibitors of important enzymes involved in the DDR have been developed, such as PARP inhibitors, DNA-PK inhibitors, and ATM/ATR inhibitors. In addition, DNA damage also triggers the cGAS-STING signaling pathway and the ATM/ATR (CHK)/STAT pathway to induce immune infiltration and T-cell activation. This review discusses the effects of DDR pathway dysregulation on the tumor response to RT and the strategies for targeting these pathways to increase tumor susceptibility to RT. Finally, the potential for the combination treatment of radiation, DDR inhibition, and immunotherapy is described.

Keywords