Applied Sciences (Aug 2024)
Anatomical-Based Customized Cervical Orthosis Design in Automation
Abstract
Cervical orthoses, vital for neck immobilization in medical care and sports, often struggle to provide adequate support due to individual neck shape and size variations. This study addresses this issue by developing a specific computer-aided orthosis design software tailored for creating customized 3D-printed cervical orthoses. The self-developed software embedded anatomical and rehabilitation knowledge into the orthosis design process, ensuring consistency and reducing manual modification. Finite element analysis of cervical orthoses determined that a minimum thickness of 5 mm PLA (polylactic acid) material is necessary to meet safety requirements. This study highlights the automation potential of customized computer-aided orthosis design and underscores the potential to revolutionize orthopedic care. We also applied easy-to-access 3D printing technology to fabricate well-fitting and immobilized cervical orthoses. These customized cervical orthoses offer a promising future with the advantages of being cost-effective, lightweight, immobility, comfortable, easy to wear, and minimal accessories to meet clinical needs, enhancing patient comfort and compliance and providing reassurance about the economic benefits of the technology.
Keywords