Chromosome-scale genome assembly reveals insights into the evolution and ecology of the harmful algal bloom species Phaeocystis globosa Scherffel
Nansheng Chen,
Qing Xu,
Jianan Zhu,
Huiyin Song,
Liyan He,
Shuya Liu,
Xiuxian Song,
Yongquan Yuan,
Yang Chen,
Xihua Cao,
Zhiming Yu
Affiliations
Nansheng Chen
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Corresponding author
Qing Xu
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Jianan Zhu
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 10039, China
Huiyin Song
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Liyan He
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Shuya Liu
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Xiuxian Song
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 10039, China
Yongquan Yuan
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Yang Chen
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 10039, China
Xihua Cao
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Zhiming Yu
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China; College of Marine Science, University of Chinese Academy of Sciences, Beijing 10039, China
Summary: The phytoplankton Phaeocystis globosa plays an important role in sulfur cycling and climate control, and can develop harmful algal blooms (HABs). Here we report a chromosome-scale reference genome assembly of P. globosa, which enable in-depth analysis of molecular underpinnings of important ecological characteristics. Comparative genomic analyses detected two-rounds of genome duplications that may have fueled evolutionary innovations. The genome duplication may have resulted in the formation of dual HiDP and LoDP dimethylsulphoniopropionate (DMSP) biosynthesis pathways in P. globosa. Selective gene family expansions may have strengthened biological pathways critical for colonial formation that is often associated with the development of algal blooms. The copy numbers of rhodopsin genes are variable in different strains, suggesting that rhodopsin genes may play a role in strain-specific adaptation to ecological factors. The successful reconstruction of the P. globosa genome sets up an excellent platform that facilitates in-depth research on bloom development and DMSP metabolism.