Journal of Hymenoptera Research (Feb 2019)
The attraction of Tremex apicalis (Hymenoptera, Siricidae, Tremecinae) and its parasitoid Ibalia japonica (Hymenoptera, Ibaliidae) to the fungus Cerrena unicolor
Abstract
Read online Read online Read online
Woodwasps (Hymenoptera: Siricidae) are saproxylic insects and a common forest pest. Siricid woodwasps are classified into two subfamilies: Siricinae and Tremecinae. All known symbiotic fungi of Siricinae are in the genus Amylostereum Boidin while some species of Tremecinae have been observed to have a relationship with the fungus Cerrena unicolor (Bull.) Murrill. Previous studies about the host searching behavior of woodwasps and their parasitoids have focused primarily on the subfamily Siricinae. We analyzed the role of C. unicolor volatiles on the host searching behavior of Tremex apicalis Matsumura (Hymenoptera: Siricidae: Tremecinae) and its parasitoid Ibalia (Tremibalia) japonica Matsumura (Hymenoptera: Ibaliidae). The results of an olfactory response experiment indicated that the females of T. apicalis and its parasitoid find their respective hosts using volatiles from C. unicolor. Using DNA barcode, we identified basidiocarps on the trees infested with T. apicalis. The basidiocarps were all white-rot fungi that cause sapwood decay, including C. unicolor. Two additional species that we identified belonged to genera closely related to C. unicolor. Woodwasp species are known to carry symbiotic fungi in a pair of specialized sacs called mycangia. Notably we found that mycangia-like structures were absent in the abdomens of T. apicalis females. To the best of our knowledge, Xeris spectrum (Linnaeus) (Hymenoptera: Siricidae) is the only reported example of woodwasp species that do not contain symbiotic fungi in their bodies. Our results suggested that: (1) T. apicalis females search for host wood that is already infected with sapwood decaying fungus using volatile compounds; (2) T. apicalis’ female parasitoid also uses volatile compounds from fungus to locate wood that is infested with its potential host.