Dental Research Journal (Jan 2022)

In vitro bioactivity of newly introduced dual-cured resin-modified calcium silicate cement

  • Ahmed Elbanna,
  • Diaa Atta,
  • Dalia I Sherief

DOI
https://doi.org/10.4103/1735-3327.336686
Journal volume & issue
Vol. 19, no. 1
pp. 1 – 1

Abstract

Read online

Background: This study was designed to investigate the in vitro bioactivity of a new dual cured calcium silicate cement (TheraCal PT) compared to its light cured (TheraCal LC) and chemically set (Biodentine) counterparts. Materials and Methods: The study is an in vitro original research article. Prepared cements discs were immersed in deionized water. Ca2+ release was evaluated using inductively coupled plasma-optical emission spectrometry while pH was assessed using a pH meter after 1, 14, and 28 days. Discs for surface characterization were immersed in phosphate-buffered saline (PBS) and were examined using an environmental scanning electron microscope with energy dispersive X-ray (ESEM/EDX), immediately after setting and at 1, 14, and 28 days intervals after that. Attenuated total reflectance (ATR)/Fourier transform infrared (FTIR) and Raman spectroscopy analyses were performed after setting and after 28 days storage in PBS. Statistical analysis was performed using the two-way repeated measure analysis of variance test followed by Bonferroni test for multiple comparisons (P < 0.05). Results: Biodentine exhibited the highest mean values for Ca2+ release (792,639,278 ppm) and pH (10.99, 12.7, 11.54) at all time intervals. ESEM/EDX displayed a continuous layer of calcium phosphate formed by Biodentine and TheraCal LC while TheraCal PT developed scarce interrupted precipitates after immersion in PBS. ATR/FTIR and Raman spectroscopy for the formed precipitates confirmed the presence of phosphate and Ca (OH) 2 in Biodentine, TheraCal LC and TheraCal PT. Conclusion: TheraCal PT exhibited limited in vitro bioactivity which may limit its prognosis in clinical applications for vital pulp therapy. TheraCal LC is considered a potential bioactive calcium silicate cement despite its lower Ca2+ release compared to Biodentine. Highest bioactivity was observed in Biodentine.

Keywords