PLoS ONE (Jan 2014)

Optimisation of reference genes for gene-expression analysis in a rabbit model of left ventricular diastolic dysfunction.

  • Walid Nachar,
  • David Busseuil,
  • Yanfen Shi,
  • Teodora Mihalache-Avram,
  • Mélanie Mecteau,
  • Eric Rhéaume,
  • Jean-Claude Tardif

DOI
https://doi.org/10.1371/journal.pone.0089331
Journal volume & issue
Vol. 9, no. 2
p. e89331

Abstract

Read online

Left ventricular diastolic dysfunction (LVDD) is characterized by the disturbance of ventricle's performance due to its abnormal relaxation or to its increased stiffness during the diastolic phase. The molecular mechanisms underlying LVDD remain unknown. We aimed to identify normalization genes for accurate gene-expression analysis of LVDD using quantitative real-time PCR (RT-PCR) in a new rabbit model of LVDD. Eighteen rabbits were fed with a normal diet (n = 7) or a 0.5% cholesterol-enriched diet supplemented with vitamin D2 (n = 11) for an average of 14.5 weeks. We validated the presence of LVDD in this model using echocardiography for diastolic function assessment. RT-PCR was performed using cDNA derived from left ventricle samples to measure the stability of 10 genes as candidate reference genes (Gapdh, Hprt1, Ppia, Sdha, Rpl5, Actb, Eef1e1, Ywhaz, Pgk1, and G6pd). Using geNorm analysis, we report that Sdha, Gapdh and Hprt1 genes had the highest stability (M <0.2). By contrast, Hprt1 and Rpl5 genes were found to represent the best combination for normalization when using the Normfinder algorithm (stability value of 0.042). Comparison of both normalization strategies highlighted an increase of natriuretic peptides (Bnp and Anp), monocytes chemotactic protein-1 (Mcp-1) and NADPH oxidase subunit (Nox-2) mRNA expressions in ventricle samples of the hypercholesterolemic rabbits compared to controls (P<0.05). This increase correlates with LVDD echocardiographic parameters and most importantly it molecularly validates the presence of the disease in our model. This is the first study emphasizing the selection of stable reference genes for RT-PCR normalization in a rabbit model of LVDD.