Mathematics (Jun 2015)

Singular Bilinear Integrals in Quantum Physics

  • Brian Jefferies

DOI
https://doi.org/10.3390/math3030563
Journal volume & issue
Vol. 3, no. 3
pp. 563 – 603

Abstract

Read online

Bilinear integrals of operator-valued functions with respect to spectral measures and integrals of scalar functions with respect to the product of two spectral measures arise in many problems in scattering theory and spectral analysis. Unfortunately, the theory of bilinear integration with respect to a vector measure originating from the work of Bartle cannot be applied due to the singular variational properties of spectral measures. In this work, it is shown how ``decoupled'' bilinear integration may be used to find solutions \(X\) of operator equations \(AX-XB=Y\) with respect to the spectral measure of \(A\) and to apply such representations to the spectral decomposition of block operator matrices. A new proof is given of Peller's characterisation of the space \(L^1((P\otimes Q)_{\mathcal L(\mathcal H)})\) of double operator integrable functions for spectral measures \(P\), \(Q\) acting in a Hilbert space \(\mathcal H\) and applied to the representation of the trace of \(\int_{\Lambda\times\Lambda}\varphi\,d(PTP)\) for a trace class operator \(T\). The method of double operator integrals due to Birman and Solomyak is used to obtain an elementary proof of the existence of Krein's spectral shift function.

Keywords