Effects of aging on chemical structure and molecular dynamic behaviour of strained thermally active ethylene-vinyl acetate | multiwall carbon nanotube (EVA|MWCNT) composites were investigated by spectroscopy and microscopy techniques. Aged composites showed spatial inhomogeneity due to system relaxation. Inhomogeneity is attributed to segregation of non-covalently linked cholestryl 1-pyrenecarboxylate, acting as MWCNT dispersant and polymer compatibilizer. Analysis of molecular interplay between filler and matrix upon in situ temperature variation showed a lack of synchronicity, which had been observed in fresh composites. Reduced synchronous interplay allowed quantification of degraded π-π interactions, promoting PyChol unlatching as a result of both sonication and strained-derived π-π degradation.