Heliyon (May 2024)

Influence of building direction on physical and mechanical properties of titanium implants: A systematic review

  • João Vicente Calazans Neto,
  • Andréa Cândido dos Reis,
  • Mariana Lima da Costa Valente

Journal volume & issue
Vol. 10, no. 9
p. e30108

Abstract

Read online

The objective of the systematic review is to find an answer to a question: ''What is the influence of the building direction of titanium implants produced by additive manufacturing on their physical and mechanical properties?'' This review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA 2020) and was registered in the Open Science Framework (OSF) (osf.io/rdc84). Searches were performed in PubMed, Scopus, Science Direct, Embase, and Google Scholar databases on February 17th, 2024. Articles were chosen in 2 steps by 2 blinded reviewers based on previously selected inclusion criteria: In vitro studies that evaluated the influence of the impression direction of titanium implants produced by additive manufacturing on their physical and mechanical properties were selected. Articles were excluded that (1) did not use additive technology to obtain the implants, 2) used surfaces other than titanium, 3) did not evaluate the direction of impression, 4) Studies with only in vivo analyses, clinical studies, systematic reviews, book chapters, short communications, conference abstracts, case reports, and personal opinions.). In the initial search, 581 results were found. Of this total, 108 were excluded for duplication and, after applying the eligibility criteria, 16 articles were included in the present review. The risk of bias was analyzed using the RoBDEMAT. The risk of bias was analyzed using the RoBDEMAT. In addition, the coefficient of interagreement of the reviewers (Cohen's Kappa) and the certainty of evidence by GRADE were analyzed. In general, different impression angles showed variations in the physical and mechanical characteristics of the groups evaluated, including roughness, tensile strength, hardness, and modulus of elasticity. While some impression orientations resulted in greater strength or hardness, others showed greater elasticity or lower surface roughness. These findings suggest that print orientation plays a significant role in determining material properties. It can be concluded that printing directions influence the physical and mechanical properties of titanium implants and the studies included showed that the 0°, 45°, and 90° directions are the most evaluated as they present lower probabilities of structural anisotropies and provide better results in their roughness, hardness, tensile and compressive strength.