Site-Selective Polyolefin Hydrogenolysis on Atomic Ru for Methanation Suppression and Liquid Fuel Production
Mingyu Chu,
Xianpeng Wang,
Xuchun Wang,
Xiangxi Lou,
Congyang Zhang,
Muhan Cao,
Lu Wang,
Youyong Li,
Sibao Liu,
Tsun-Kong Sham,
Qiao Zhang,
Jinxing Chen
Affiliations
Mingyu Chu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Xianpeng Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Xuchun Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Xiangxi Lou
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Congyang Zhang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Muhan Cao
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Lu Wang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Youyong Li
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Sibao Liu
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Tsun-Kong Sham
Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada.
Qiao Zhang
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Jinxing Chen
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
Catalytic hydrogenolysis of end-of-life polyolefins can produce value-added liquid fuels and therefore holds great promises in plastic waste reuse and environmental remediation. The major challenge limiting the recycling economic benefit is the severe methanation (usually >20%) induced by terminal C–C cleavage and fragmentation in polyolefin chains. Here, we overcome this challenge by demonstrating that Ru single-atom catalyst can effectively suppress methanation by inhibiting terminal C–C cleavage and preventing chain fragmentation that typically occurs on multi-Ru sites. The Ru single-atom catalyst supported on CeO2 shows an ultralow CH4 yield of 2.2% and a liquid fuel yield of over 94.5% with a production rate of 314.93 gfuels gRu−1 h−1 at 250 °C for 6 h. Such remarkable catalytic activity and selectivity of Ru single-atom catalyst in polyolefin hydrogenolysis offer immense opportunities for plastic upcycling.