IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2023)

Classification of Motor Imagery Based on Multi-Scale Feature Extraction and the Channel-Temporal Attention Module

  • Runze Wu,
  • Jing Jin,
  • Ian Daly,
  • Xingyu Wang,
  • Andrzej Cichocki

DOI
https://doi.org/10.1109/TNSRE.2023.3294815
Journal volume & issue
Vol. 31
pp. 3075 – 3085

Abstract

Read online

Motor imagery (MI) is a popular paradigm for controlling electroencephalogram (EEG) based Brain-Computer Interface (BCI) systems. Many methods have been developed to attempt to accurately classify MI-related EEG activity. Recently, the development of deep learning has begun to draw increasing attention in the BCI research community because it does not need to use sophisticated signal preprocessing and can automatically extract features. In this paper, we propose a deep learning model for use in MI-based BCI systems. Our model makes use of a convolutional neural network based on a multi-scale and channel-temporal attention module (CTAM), which called MSCTANN. The multi-scale module is able to extract a large number of features, while the attention module includes both a channel attention module and a temporal attention module, which together allow the model to focus attention on the most important features extracted from the data. The multi-scale module and the attention module are connected by a residual module, which avoids the degradation of the network. Our network model is built from these three core modules, which combine to improve the recognition ability of the network for EEG signals. Our experimental results on three datasets (BCI competition IV 2a, III IIIa and IV 1) show that our proposed method has better performance than other state-of-the-art methods, with accuracy rates of 80.6%, 83.56% and 79.84%. Our model has stable performance in decoding EEG signals and achieves efficient classification performance while using fewer network parameters than other comparable state-of-the-art methods.

Keywords