Journal of Ultrafine Grained and Nanostructured Materials (Dec 2013)
On the Mechanical Properties of Chiral Carbon Nanotubes
Abstract
Carbon nanotubes (CNTs) are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry of single-walled CNTs with any desired structure based on nano-scale continuum mechanics approach. By changing the chiral angle from 0 to 30 degree for constant length to radius ratio, the effect of nanotube chirality on its mechanical properties is evaluated. It is observed that the tensile modulus of CNTs changes between 0.93-1.02 TPa for different structures, and it can be higher for chiral structures than zigzag and armchair ones. Also, for different chiral angles, the bending modulus changes between 0.76-0.82 TPa, while the torsional modulus varies in the range of 0.283-0.301TPa.
Keywords