College of Materials Science and Engineering, Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518000, China
Chuyu Xu
College of Materials Science and Engineering, Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518000, China
Liping Hong
College of Materials Science and Engineering, Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518000, China
Fang Xu
Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
Chun Zhao
Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
Yu Zhang
Department of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
Ming Fang
College of Materials Science and Engineering, Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518000, China
Shun Han
College of Materials Science and Engineering, Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518000, China
Peijiang Cao
College of Materials Science and Engineering, Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518000, China
Youming Lu
College of Materials Science and Engineering, Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518000, China
Wenjun Liu
College of Materials Science and Engineering, Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518000, China
Deliang Zhu
College of Materials Science and Engineering, Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518000, China
We demonstrate the growth of ultra-thin (~5 nm) indium ytterbium oxide (In-Yb-O) thin film using a simple vacuum-free aqueous solution approach for the first time. The influences of Yb addition on the microstructural, chemical, optical, and electrical properties of In2O3 are well investigated. The analyses indicate that Yb dopant could suppress oxygen vacancy defects effectively owing to the lower standard electrode potential, lower electronegativity, and stronger metal-oxide bond strength than that of In. The optimized In-Yb-O thin-film transistors (TFTs) exhibit excellent electrical performance (mobility of 8 cm2/Vs and on/off ratio of ~108) and enhanced stability. The triumph of In-Yb-O TFTs is owing to the high quality In2O3 matrix, the remarkable suppressor of Yb, and the nanometer-thin and atomically smooth nature (RMS: ~0.26 nm) of channel layer. Therefore, the eco-friendly water-induced ultra-thin In-Yb-O channel provides an excellent opportunity for future large-scale and cost-effective electronic applications.