Sensors (Jul 2024)
Trajectory Tracking with Obstacle Avoidance for Nonholonomic Mobile Robots with Diamond-Shaped Velocity Constraints and Output Performance Specifications
Abstract
In this paper, we address the trajectory-/target-tracking and obstacle-avoidance problem for nonholonomic mobile robots subjected to diamond-shaped velocity constraints and predefined output performance specifications. The proposed scheme leverages the adaptive performance control to dynamically adjust the user-defined output performance specifications, ensuring compliance with input and safety constraints. A key feature of this approach is the integration of multiple constraints into a single adaptive performance function, governed by a simple adaptive law. Additionally, we introduce a robust velocity estimator with a priori-determined performance attributes to reconstruct the unmeasured trajectory/target velocity. Finally, we validate the effectiveness and robustness of the proposed control scheme, through extensive simulations and a real-world experiment.
Keywords