Indian Spine Journal (Jan 2019)
Cell-based treatment strategies for intervertebral disc degeneration: An overview on potentials and shortcomings
Abstract
The intervertebral discs (IVDs) are the cushioning pads of fibrocartilage, which are immeasurably vital for the uprightness of vertebral column and for its function. IVD provides flexibility, tensile strength to the spine, and also cope up with varied types of biomechanical stresses. IVD degeneration (IVDD) is one of the musculoskeletal disorders mostly seen in older population, and it is the foremost cause of low back pain and consequences of IVDD are disc herniation, spinal stenosis, and degenerative lumbar scoliosis. Yet the therapeutic options are restricted and the treatments given remain unsatisfactory putting more economical burden on world's population. IVDD is considered as a multifactorial disorder, due to the involvement of factors such as genetic inheritance, alterations in cellular composition, and anabolic and catabolic reactions, which could initiate degenerative process in the IVD. However, our conception on IVD genesis and the etiopathology of IVDD have given us an opportunity for exploring and formulate appropriate therapies to tackle IVDD. The cell therapy gives scope for sustained matrix synthesis, controlled inflammation, and prevention of osteophyte formation in IVD. The present review focuses on the existing issues related to current therapeutic approaches and about latest evidence on cell therapy-based regeneration of IVD and maintaining the microenvironment of cellular matrix which holds a promise for future therapeutic applications.
Keywords