CRTC1 Nuclear Translocation Following Learning Modulates Memory Strength via Exchange of Chromatin Remodeling Complexes on the Fgf1 Gene
Shusaku Uchida,
Brett J.W. Teubner,
Charles Hevi,
Kumiko Hara,
Ayumi Kobayashi,
Rutu M. Dave,
Tatsushi Shintaku,
Pattaporn Jaikhan,
Hirotaka Yamagata,
Takayoshi Suzuki,
Yoshifumi Watanabe,
Stanislav S. Zakharenko,
Gleb P. Shumyatsky
Affiliations
Shusaku Uchida
Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA; Corresponding author
Brett J.W. Teubner
Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
Charles Hevi
Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
Kumiko Hara
Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
Ayumi Kobayashi
Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
Rutu M. Dave
Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
Tatsushi Shintaku
Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
Pattaporn Jaikhan
Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
Hirotaka Yamagata
Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
Takayoshi Suzuki
Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
Yoshifumi Watanabe
Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
Stanislav S. Zakharenko
Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
Gleb P. Shumyatsky
Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA; Corresponding author
Summary: Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. : Uchida et al. link CRTC1 synapse-to-nucleus shuttling in memory. Weak and strong training induce CRTC1 nuclear transport and transient Fgf1b transcription by a complex including CRTC1, CREB, and histone acetyltransferase CBP, whereas strong training alone maintains Fgf1b transcription through CRTC1-dependent substitution of KAT5 for CBP, leading to memory enhancement. Keywords: memory enhancement, long-term potentiation, hippocampus, nuclear transport, epigenetics, FGF1, CRTC1, KAT5/Tip60, HDAC3, CREB