European Journal of Medical Research (Mar 2024)

Clinicopathological and molecular genetic alterations in monomorphic–epitheliotropic intestinal T-cell lymphoma of the small intestine

  • Bing Zhou,
  • Min Guo,
  • Xiaohua Li,
  • Ting Duan,
  • Lizi Peng,
  • Hua Hao

DOI
https://doi.org/10.1186/s40001-024-01797-5
Journal volume & issue
Vol. 29, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background Small intestinal monomorphic–epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare aggressive T-cell lymphoma originating in the gastrointestinal tract. This study aimed to investigate the clinicopathological features, immunophenotypes, and molecular genetic changes of MEITL. Methods The clinicopathological data for three patients with surgically resected MEITL of the small intestine were collected. Next, immunohistochemical labeling, Epstein–Barr virus (EBV) in situ hybridization, assessment of clonal rearrangement of T-cell receptor (TCR) genes, and next-generation sequencing (NGS) were performed. Results Of the three patients, two were male and one was female, with ages of 61, 67, and 73 years, respectively. Clinical manifestations were predominantly abdominal pain and distension. Histopathology revealed infiltrative growth of small-to-medium-sized lymphocytes with a consistent morphology between the intestinal walls, accompanied by an obvious pro-epithelial phenomenon. The expression of CD3, CD8, CD43, CD56, TIA-1, CD103, H3K36me3, and Bcl-2 was detected, and the Ki-67 proliferation index ranged from 50% to 80%. All three patients tested negative for EBER. However, monoclonal rearrangement of the TCR gene was detected in them. NGS testing showed a JAK3 mutation in all three cases. Further, STAT5B, SETD2, and TP53 mutations were each observed in two cases, and a BCOR mutation was found in one case. All patients were treated with chemotherapy after surgery. Two patients died 7 and 15 month post-operation, and one patient survived for 5 months of follow-up. Conclusions Our findings demonstrate that mutations in JAK3 and STAT5B of the JAK/STAT pathway and inactivation of the oncogene SETD2 markedly contribute to the lymphomagenesis of MEITL.

Keywords