IEEE Access (Jan 2023)
An Efficient Multi-Secret Image Sharing System Based on Chinese Remainder Theorem and Its FPGA Realization
Abstract
Multi-Secret Image Sharing (MSIS) is important in information security when multiple images are shared in an unintelligible form to different participants, where the images can only be recovered using the shares from participants. This paper proposes a simple and efficient ( $n,n$ )-MSIS system for colored images based on XOR and Chinese Remainder Theorem (CRT), where all the $n$ share are required in the recovery. The system improves the security by adding dependency on the input images to be robust against differential attacks, and by using several delay units. It works with even and odd number of inputs, and has a long sensitive system key design for the CRT. Security analysis and a comparison with related literature are introduced with good results including statistical tests, differential attack measures, and key sensitivity tests as well as performance analysis tests such as time and space complexity. In addition, Field Programmable Gate Array (FPGA) realization of the proposed system is presented with throughput 530 Mbits/sec. Finally, the proposed MSIS system is validated through software and hardware with all statistical analyses and proper hardware resources with low power consumption, high throughput and high level of security.
Keywords