lnstituto de Neurociencias (UMH-CSIC), Alicante, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Centre for Developmental Neurobiology, Institute of Psychiatry, King’s College London, London, United Kingdom
Partha N Dey
Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; National Eye Institute, National Institutes of Health, Bethesda, United States
lnstituto de Neurociencias (UMH-CSIC), Alicante, Spain
Luis G Rabaneda
lnstituto de Neurociencias (UMH-CSIC), Alicante, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Institute of Science and Technology Austria, Klosterneuburg, Austria
Carmen García-Lira
lnstituto de Neurociencias (UMH-CSIC), Alicante, Spain
Teddy Grand
Institut de Biologie de l’Ecole Normale Supérieure/CNRS/INSERM, Paris, France
Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
Eric R Velasco
Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
Raül Andero
Institut de Neurociències, Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; ICREA, Barcelona, Spain
Sergio Niñerola
lnstituto de Neurociencias (UMH-CSIC), Alicante, Spain
De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.