International Journal of Endocrinology (Jan 2024)
Whether Detection of Gene Mutations Could Identify Low- or High-Risk Papillary Thyroid Microcarcinoma? Data from 393 Cases Using the Next-Generation Sequencing
Abstract
Objective. The objective of this study is to explore the utilization of next-generation sequencing (NGS) technology in evaluating the likelihood of identifying individuals with papillary thyroid microcarcinoma (PTMC ≤10 mm) who are at high or low risk. Design. NGS was used to analyze 393 formalin-fixed, paraffin-embedded tissues of PTC tumors, all of which were smaller than 15 mm. Results. The study found that bilateralism, multifocality, intrathyroidal spread, and extrathyroidal extension were present in 84 (21.4%), 153 (38.9%), 16 (4.1%), and 54 (13.7%) cases, respectively. Metastasis of cervical lymph nodes was identified in 226 (57.5%) cases and 96 (24.4%) cases with CLNM >5. Out of the total number of cases studied, 8 cases (2.3%) showed signs of tumor recurrence, all of which were localized and regional. Genetic alterations were detected in 342 cases (87.0%), with 336 cases revealing single mutations and 6 cases manifesting compound mutations. 332 cases (84.5%) had BRAFV600E mutation, 2 cases had KRASQ61K mutation, 2 cases had NRASQ61R mutation, 8 cases had RET/PTC1 rearrangement, 3 cases had RET/PTC3 rearrangement, and 1 case had TERT promoter mutation. Additionally, six individuals harbored concurrent mutations in two genes. These mutations were of various types and combinations: BRAFV600E and NRASQ61R (n = 2), BRAFV600E and RET/PTC3 (n = 2), BRAFV600E and RET/PTC1 (n = 1), and BRAFV600E and TERT promoter (n = 1). The subsequent analysis did not uncover a significant distinction in the incidence of gene mutation or fusion between the cN0 and cN1 patient cohorts. The presence of BRAFV600E mutation and CLNM incidence rates were found to be positively correlated with larger tumor size in PTMC. Our data showed that gene mutations did not appear to have much to do with high-risk papillary thyroid microcarcinoma (PTMC). However, when we looked at tumor size, we found that if the tumor was at least 5 millimeters in size, there was a higher chance of it being at high risk for PTM (P<0.001, odds ratio (OR) = 2.55, 95% confidence interval (CI): 1.57–4.14). Identification of BRAFV600E mutation was not demonstrated to be significantly correlated with advanced clinicopathological characteristics, although it was strongly associated with a bigger tumor diameter (OR = 4.92, 95% CI: 2.40–10.07, P<0.001). Conclusion. In clinical practice, BRAFV600E mutation does not consistently serve as an effective biomarker to distinguish high-risk PTMC or predict tumor progression. The size of the tumor has a significant correlation with its aggressive characteristics. PTMC with a diameter of ≤5 mm should be distinguished and targeted as a unique subset for specialized treatment.