GCB Bioenergy (Apr 2020)

Projections of global and UK bioenergy potential from Miscanthus × giganteus—Feedstock yield, carbon cycling and electricity generation in the 21st century

  • Anita Shepherd,
  • Emma Littleton,
  • John Clifton‐Brown,
  • Mike Martin,
  • Astley Hastings

DOI
https://doi.org/10.1111/gcbb.12671
Journal volume & issue
Vol. 12, no. 4
pp. 287 – 305

Abstract

Read online

Abstract In this article, we modify bioenergy model MiscanFor investigating global and UK potentials for Miscanthus × giganteus as a bioenergy resource for carbon capture in the 21st century under the RCP 2.6 climate scenario using SSP2 land use projections. UK bioenergy land projections begin in the 2040s, 60 year average is 0.47 Mega ha rising to 1.9 Mega ha (2090s). Our projections estimate UK energy generation of 0.09 EJ/year (60 year average) and 0.37 EJ/year (2090s), under stable miscanthus yields of 12 t ha−1 year−1. We estimate aggregated UK soil carbon (C) increases of 0.09 Mt C/year (60 year average) and 0.14 Mt C/year (2090s) with C capture plus sequestration rate of 2.8 Mt C/year (60 year average) and 10.49 Mt C/year (2090s). Global bioenergy land use begins in 2010, 90 year average is 0.13 Gha rising to 0.19 Gha by the 2090s, miscanthus projections give a 90 year average energy generation of 16 EJ/year, rising to 26.7 EJ/year by the 2090s. The largest national capabilities for yield, energy and C increase are projected to be Brazil and China. Ninety year average global miscanthus yield of 1 Gt/year will be 1.7 Gt/year by the 2090s. Global soil C sequestration increases less with time, from a century average of 73.6 Mt C/year to 42.9 Mt C/year by the 2090s with C capture plus sequestration rate of 0.54 Gt C/year (60 year average) and 0.81 Gt C/year (2090s). M. giganteus could provide just over 5% of the bioenergy requirement by the 2090s to satisfy the RCP 2.6 SSP2 climate scenario. The choice of global land use data introduces a potential source of error. In reality, multiple bioenergy sources will be used, best suited to local conditions, but results highlight global requirements for development in bioenergy crops, infrastructure and support.

Keywords