PLoS ONE (Jan 2013)
Apoptotic damage of pancreatic ductal epithelia by alcohol and its rescue by an antioxidant.
Abstract
Alcohol abuse is a major cause of pancreatitis. However alcohol toxicity has not been fully elucidated in the pancreas and little is known about the effect of alcohol on pancreatic ducts. We report the molecular mechanisms of ethanol-induced damage of pancreatic duct epithelial cells (PDEC). Ethanol treatment for 1, 4, and 24 h resulted in cell death in a dose-dependent manner. The ethanol-induced cell damage was mainly apoptosis due to generation of reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (MMP), and activation of caspase-3 enzyme. The antioxidant N-acetylcysteine (NAC) attenuated these cellular responses and reduced cell death significantly, suggesting a critical role for ROS. Acetaldehyde, a metabolic product of alcohol dehydrogenase, induced significant cell death, depolarization of MMP, and caspase-3 activation as ethanol and this damage was also averted by NAC. Reverse transcription-polymerase chain reaction revealed the expression of several subtypes of alcohol dehydrogenase and acetaldehyde dehydrogenase. Nuclear magnetic resonance spectroscopy data confirmed the accumulation of acetaldehyde in ethanol-treated cells, suggesting that acetaldehyde formation can contribute to alcohol toxicity in PDEC. Finally, ethanol increased the leakage of PDEC monolayer which was again attenuated by NAC. In conclusion, ethanol induces apoptosis of PDEC and thereby may contribute to the development of alcohol-induced pancreatitis.