Non-Coding RNA (Oct 2016)

TWEAK Negatively Regulates Human Dicer

  • Marine Lambert,
  • Geneviève Pépin,
  • Oscar Peralta-Zaragoza,
  • Raphaël Matusiak,
  • Sophia Ly,
  • Patricia Landry,
  • Patrick Provost

DOI
https://doi.org/10.3390/ncrna2040012
Journal volume & issue
Vol. 2, no. 4
p. 12

Abstract

Read online

The ribonuclease Dicer plays a central role in the microRNA pathway by processing microRNA precursors (pre-microRNAs) into microRNAs, a class of 19- to 24-nucleotide non-coding RNAs that regulate expression of ≈60% of the genes in humans. To gain further insights into the function and regulation of Dicer in human cells, we performed a yeast two-hybrid (Y2HB) screen using human Dicer double-stranded RNA-binding domain (dsRBD) as bait. This approach identified tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) as a Dicer-interacting protein candidate. Confocal immunofluorescence microscopy revealed the colocalization of Dicer and TWEAK proteins at the perinuclear region of HeLa cells. The Dicer-TWEAK protein interaction was confirmed by coimmunoprecipitation and found not likely to be mediated by RNA. TWEAK dose-dependently reduced pre-microRNA conversion into mature microRNA in Dicer activity assays using extracts of transfected human HEK 293 cells. TWEAK expression also impaired microRNA-guided RNA silencing of a reporter gene induced by a pre-microRNA. These findings suggest a role for TWEAK—a pro-inflammatory cytokine—in regulating Dicer function and microRNA biogenesis, and its possible involvement in regulating gene expression during inflammatory processes and diseases.

Keywords