Energies (Aug 2024)
Multi-Variable Optimization to Enhance the Performance of a Cantilevered Piezoelectric Harvester
Abstract
Over the past decade, various researchers have shown the practicality of extracting electrical energy from vibrating structures. The primary objective of this research was to optimize the parameters of a basic cantilever harvester to maximize the energy production of electricity from surrounding mechanical energy. A distributed parameter model and its modal solution were utilized to determine the design variables via a parametric investigation. It is important to ensure sufficient power generation when there is a wide range of frequencies being excited, without any specific frequency being emphasized. The cost function for the optimization problem was defined as the average power within a specific frequency range, considering geometric and physical restrictions. It was discovered that different parameters’ values can be utilized to generate varying maximum power levels for different frequency ranges. Furthermore, a comparative analysis was performed between the finite element method (FEM) using ANSYS and the current harvesting model. The comparison demonstrated a high level of concordance, enabling the utilization of the finite element method (FEM) for subsequent investigation.
Keywords