Sensors (Jun 2019)
Capacitive Bio-Inspired Flow Sensing Cupula
Abstract
Submersible robotics have improved in efficiency and versatility by incorporating features found in aquatic life, ranging from thunniform kinematics to shark skin textures. To fully realize these benefits, sensor systems must be incorporated to aid in object detection and navigation through complex flows. Again, inspiration can be taken from biology, drawing on the lateral line sensor systems and neuromast structures found on fish. To maintain a truly soft-bodied robot, a man-made flow sensor must be developed that is entirely complaint, introducing no rigidity to the artificial “skin.” We present a capacitive cupula inspired by superficial neuromasts. Fabricated via lost wax methods and vacuum injection, our 5 mm tall device exhibits a sensitivity of 0.5 pF/mm (capacitance versus tip deflection) and consists of room temperature liquid metal plates embedded in a soft silicone body. In contrast to existing capacitive examples, our sensor incorporates the transducers into the cupula itself rather than at its base. We present a kinematic theory and energy-based approach to approximate capacitance versus flow, resulting in equations that are verified with a combination of experiments and COMSOL simulations.
Keywords