Journal of Function Spaces (Jan 2020)
Oscillation Results for a Class of Nonlinear Fractional Order Difference Equations with Damping Term
Abstract
The paper studies the oscillation of a class of nonlinear fractional order difference equations with damping term of the form Δψλzηλ+pλzηλ+qλF∑s=λ0λ−1+μ λ−s−1−μys=0, where zλ=aλ+bλΔμyλ, Δμ stands for the fractional difference operator in Riemann-Liouville settings and of order μ, 0<μ≤1, and η≥1 is a quotient of odd positive integers and λ∈ℕλ0+1−μ. New oscillation results are established by the help of certain inequalities, features of fractional operators, and the generalized Riccati technique. We verify the theoretical outcomes by presenting two numerical examples.