Journal of Personalized Medicine (Feb 2023)

Enhancement of Cell Adhesion by <i>Anaplasma phagocytophilum</i> Nucleolin-Interacting Protein AFAP

  • Hongcheng Tang,
  • Daxiu Zhang,
  • Fenfen Jiang,
  • Lifeng Yu,
  • Hui Tang,
  • Jiafeng Zhu,
  • Shuyan Wu,
  • Hua Niu

DOI
https://doi.org/10.3390/jpm13020302
Journal volume & issue
Vol. 13, no. 2
p. 302

Abstract

Read online

Anaplasma phagocytophilum, the aetiologic agent of human granulocytic anaplasmosis (HGA), is an obligate intracellular Gram-negative bacterium. During infection, A. phagocytophilum enhances the adhesion of neutrophils to the infected endothelial cells. However, the bacterial factors contributing to this phenomenon remain unknown. In this study, we characterized a type IV secretion system substrate of A. phagocytophilum, AFAP (an actin filament-associated Anaplasma phagocytophilum protein) and found that it dynamically changed its pattern and subcellular location in cells and enhanced cell adhesion. Tandem affinity purification combined with mass spectrometry identified host nucleolin as an AFAP-interacting protein. Further study showed the disruption of nucleolin by RNA interference, and the treatment of a nucleolin-binding DNA aptamer AS1411 attenuated AFAP-mediated cell adhesion, indicating that AFAP enhanced cell adhesion in a nucleolin-dependent manner. The characterization of cell adhesion-enhancing AFAP and the identification of host nucleolin as its interaction partner may help understand the mechanism underlying A. phagocytophilum-promoting cell adhesion, facilitating the elucidation of HGA pathogenesis.

Keywords