Scientific Reports (Apr 2024)

Performance and robustness of small molecule retention time prediction with molecular graph neural networks in industrial drug discovery campaigns

  • Daniel Vik,
  • David Pii,
  • Chirag Mudaliar,
  • Mads Nørregaard-Madsen,
  • Aleksejs Kontijevskis

DOI
https://doi.org/10.1038/s41598-024-59620-4
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 8

Abstract

Read online

Abstract This study explores how machine-learning can be used to predict chromatographic retention times (RT) for the analysis of small molecules, with the objective of identifying a machine-learning framework with the robustness required to support a chemical synthesis production platform. We used internally generated data from high-throughput parallel synthesis in context of pharmaceutical drug discovery projects. We tested machine-learning models from the following frameworks: XGBoost, ChemProp, and DeepChem, using a dataset of 7552 small molecules. Our findings show that two specific models, AttentiveFP and ChemProp, performed better than XGBoost and a regular neural network in predicting RT accurately. We also assessed how well these models performed over time and found that molecular graph neural networks consistently gave accurate predictions for new chemical series. In addition, when we applied ChemProp on the publicly available METLIN SMRT dataset, it performed impressively with an average error of 38.70 s. These results highlight the efficacy of molecular graph neural networks, especially ChemProp, in diverse RT prediction scenarios, thereby enhancing the efficiency of chromatographic analysis.

Keywords