International Journal of Mathematics and Mathematical Sciences (Jan 2000)
About the existence of the thermodynamic limit for some deterministic sequences of the unit circle
Abstract
We show that in the set Ω=ℝ+×(1,+∞)⊂ℝ+2, endowed with the usual Lebesgue measure, for almost all (h,λ)∈Ω the limit limn→+∞(1/n)ln|h(λn−λ−n)mod[-12,12)| exists and is equal to zero. The result is related to a characterization of relaxation to equilibrium in mixing automorphisms of the two-torus. It is nothing but a curiosity, but maybe you will find it nice.
Keywords