Natural Hazards and Earth System Sciences (Jun 2018)
Assessment of coastal flooding and associated hydrodynamic processes on the south-eastern coast of Mexico, during Central American cold surge events
Abstract
Coastal flooding in the northern Yucatán Peninsula is mainly associated with storm surge events triggered by high-pressure cold front systems. This study evaluates the hydrodynamic processes of the Chelem lagoon, Mexico and the flooding threat from cold fronts for the neighbouring town of Progreso. A 30-year water-level hindcast (excluding wave set-up) was performed because of the lack of long-term tide gauge records. In order to assess the relative contribution from wave set-up and residual and astronomical tides to total flooding, the two worst storm scenarios in terms of maximum residual tide (Event A) and maximum water level (Event B) were simulated. Numerical results suggest that during Event A the wave set-up contribution reaches 0.35 at the coast and 0.17 m inside the lagoon, and these values are smaller for Event B (0.30 and 0.14 m, respectively). Results of the effect of the tidal phase on wave set-up and residual sea level show that (i) the wave set-up contribution increases during ebb tide and decreases during flood tide at the Chelem inlet, (ii) the residual tide is larger (smaller) near low (high) or receding (rising) tide, and (iii) maximum flooding occurs when the storm peak coincides with rising or high tide. The numerical results confirm the important role of wave set-up on the assessment of coastal flooding in micro-tidal coastal environments.