Earth, Planets and Space (Oct 2022)

ROTI Keograms based on CMONOC to characterize the ionospheric irregularities in 2014

  • Jinghua Li,
  • Guanyi Ma,
  • Takashi Maruyama,
  • Qingtao Wan,
  • Jiangtao Fan,
  • Jie Zhang,
  • Xiaolang Wang

DOI
https://doi.org/10.1186/s40623-022-01708-0
Journal volume & issue
Vol. 74, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Ionospheric irregularities have been studied since ~ 70 years ago. With the development of Global Navigation Satellite system (GNSS), networks of GNSS receivers have been used to obtain the characteristics of the irregularities, including the drift velocity, the structure, and the evolution. In this paper, keograms based on the Crustal Movement Observation Network of China (CMONOC) were used to characterize the irregularities over the area from longitude 85 to 125 °E and latitude 11 to 35 °N in 2014. Keograms were obtained for the rate of TEC index (ROTI) for every 0.5 degree longitude and 30 min universal time pixel. The results showed that the occurrence rate of irregularities in 2014 was high in the equinox months and December, and lowest in June. In equinox months the irregularities often appeared after sunset. In March the irregularities usually had long lifetime of ~ 5–7 h and ~ 5 degrees apparent longitudinal width. The long lifetime usually was accompanied by obvious eastward drift of ~ 100 m/s and large vertical ROTI (vROTI). In September the irregularities had weaker ROTI and shorter lifetime than those in March. The irregularities in the 2 equinox months should be related to the equatorial plasma bubbles (EPBs). In June, they appeared ~ 2–3 h later than those in equinoxes and drifted westward. The summer irregularities had weakest ROTI and their latitude was ~ 30 °N, much higher than those in equinoxes. In December, the irregularities were discrete patches with a longitudinal width of ~ 2 degrees and short lifetime of ~ 2 h. Unlike the equatorial irregularities in equinox months which are part of equatorial plasma bubbles, the solstice irregularities mainly appear to be a local phenomenon. Graphical Abstract

Keywords