Forum of Mathematics, Sigma (Jan 2023)
On $\omega $ -Strongly Measurable Cardinals
Abstract
We prove several consistency results concerning the notion of $\omega $ -strongly measurable cardinal in $\operatorname {\mathrm {HOD}}$ . In particular, we show that is it consistent, relative to a large cardinal hypothesis weaker than $o(\kappa ) = \kappa $ , that every successor of a regular cardinal is $\omega $ -strongly measurable in $\operatorname {\mathrm {HOD}}$ .
Keywords