Sensors (Dec 2024)
Dynamic Road Anomaly Detection: Harnessing Smartphone Accelerometer Data with Incremental Concept Drift Detection and Classification
Abstract
Effective monitoring of road conditions is crucial for ensuring safe and efficient transportation systems. By leveraging the power of crowd-sourced smartphone sensor data, road condition monitoring can be conducted in real-time, providing valuable insights for transportation planners, policymakers, and the general public. Previous studies have primarily focused on the use of pre-trained machine learning models and threshold-based methods for anomaly classification, which may not be suitable for real-world scenarios that require incremental detection and classification. As a result, there is a need for novel approaches that can adapt to changing data environments and perform effective classification without relying on pre-existing training data. This study introduces a novel, real-time road condition monitoring technique harnessing smartphone sensor data, addressing the limitations of pre-trained models that lack adaptability in dynamic environments. A hybrid anomaly detection method, combining unsupervised and supervised learning, is proposed to effectively manage concept drift, demonstrating a significant improvement in accuracy and robustness with a 96% success rate. The findings underscore the potential of incremental learning to enhance model responsiveness and efficiency in distinguishing various road anomalies, offering a promising direction for future transportation safety and resource optimization strategies.
Keywords