Applied Sciences (May 2021)
Cationic and Anionic Dye Adsorption on a Natural Clayey Composite
Abstract
One of the main challenges for environmental sciences today is the effective treatment of dye-laden industrial effluents. This work aimed to study the potential of an untreated (natural occurring clayey composite) red clay (RC) for the adsorption of a cationic dye Basic Navy Blue 2RN (CNB) and anionic dye Drimaren Yellow CL-2R (ADY). We evaluated the effect of pH, dye concentration, and adsorbent concentration on the removal effectiveness to study the absorption process. Also, we studied the adsorption process by analyzing the feasibility of several known adsorption isotherms and kinetic models. The results show that at a pH of less than 4, the CNB and ADY removal percentages were 97% and 96%, respectively. At a pH greater than 8, the CNB and ADY removals were 75% and 25%, respectively. The CNB adsorption happened by chemisorption of a monolayer on iron-containing particles (IPs). In congtrast, the ADY adsorption occurred by monolayer physisorption on kaolinite particles (KPs) and Na, K-rich Laumontite particles (LPs). The Langmuir isotherm model fits very well with CNB experimental data. The Temkin model shows the best fit between the isotherm function and the ADY dye-adsorption data. The pseudo-second-order kinetic model fits the CNB and ADY dye-adsorption data on RC particles. The heterogeneous composition of naturally occurring clay favors different adsorption mechanisms and opens an avenue for the separation process’s engineering.
Keywords