Donor-acceptor-type poly[chalcogenoviologen-alt-triphenylamine] for synaptic biomimicking and neuromorphic computing
Zhizheng Zhao,
Qiang Che,
Kexin Wang,
Mohamed E. El-Khouly,
Jiaxuan Liu,
Yubin Fu,
Bin Zhang,
Yu Chen
Affiliations
Zhizheng Zhao
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
Qiang Che
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
Kexin Wang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
Mohamed E. El-Khouly
Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
Jiaxuan Liu
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
Yubin Fu
Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany; Corresponding author
Bin Zhang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Corresponding author
Yu Chen
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Corresponding author
Summary: Polymer memristors are preeminent candidates for low-power edge computing paradigms. Poly[chalcogenoviologen-alt-triphenylamine] (PCVTPA) has been synthesized by direct coupling of chalcogeno-viologen as electron acceptor and 4-(bromomethyl)-N-(4-(bromo-methyl)phenyl)-N-phenylaniline as electron donor. The introduction of chalcogen atoms (S, Se, Te) into viologen scaffolds can greatly improve electrical conductive, electrochemical, and electrochromic properties of the materials when compared with the conventional viologens. Taking PTeVTPA as an example, the as-fabricated electronic device with a configuration of Al/PTeVTPA/ITO exhibits excellent multilevel storage and history-dependent memristive switching performance. Associated with the unique memristive behavior, the PTeVTPA-based device can not only be used to emulate the synaptic potentiation/depression, the human's learning and memorizing functions, and the transition from short-term synaptic plasticity to long-term plasticity but also carry out decimal arithmetic operations as well. This work will be expected to offer a train of new thought for constructing high-performance synaptic biomimicking and neuromorphic computing system in the near future.