Pathogens (Feb 2025)
Anaerobiosis and Mutations Can Reduce Susceptibility of <i>Pseudomonas aeruginosa</i> to Tobramycin Without Reducing the Cellular Concentration of the Antibiotic
Abstract
Chronic infections of Pseudomonas aeruginosa are commonly treated with tobramycin. During infections, the bacteria can exist under conditions of oxygen deprivation that render them less susceptible to this antibiotic. The aims of this research were to investigate the genetic basis of tobramycin resistance under anaerobic conditions, and to investigate the effects of anaerobiosis and mutations on the cellular concentration of tobramycin. Ten mutants with lowered susceptibility to tobramycin than wild-type bacteria were evolved from a laboratory reference strain under anaerobic conditions. Mutations were identified by genome sequencing. Mutations had arisen most frequently in the fusA1 gene that encodes elongation factor EF-G1A and in genes involved in twitching motility. Cellular concentrations of tobramycin were then measured. Mutations in fusA1 or absence of the MexXY efflux pump that is associated with tobramycin resistance did not alter the cellular tobramycin concentration under either anaerobic or aerobic conditions. Anaerobic growth reduced the cellular concentration of tobramycin, relative to aerobically grown bacteria, in some but not all of five tested P. aeruginosa isolates. Overall, our findings indicate that anaerobiosis and mutations that reduce aminoglycoside effectiveness do not lower the cellular concentration of antibiotic but instead reduce susceptibility through other mechanisms.
Keywords