NeuroImage (Jun 2020)
All-or-none face categorization in the human brain
Abstract
Visual categorization is integral for our interaction with the natural environment. In this process, similar selective responses are produced to a class of variable visual inputs. Whether categorization is supported by partial (graded) or absolute (all-or-none) neural responses in high-level human brain regions is largely unknown. We address this issue with a novel frequency-sweep paradigm probing the evolution of face categorization responses between the minimal and optimal stimulus presentation times. In a first experiment, natural images of variable non-face objects were progressively swept from 120 to 3 Hz (8.33–333 ms duration) in rapid serial visual presentation sequences. Widely variable face exemplars appeared every 1 s, enabling an implicit frequency-tagged face-categorization electroencephalographic (EEG) response at 1 Hz. Face-categorization activity emerged with stimulus durations as brief as 17 ms (17–83 ms across individual participants) but was significant with 33 ms durations at the group level. The face categorization response amplitude increased until 83 ms stimulus duration (12 Hz), implying graded categorization responses. In a second EEG experiment, faces appeared non-periodically throughout such sequences at fixed presentation rates, while participants explicitly categorized faces. A strong correlation between response amplitude and behavioral accuracy across frequency rates suggested that dilution from missed categorizations, rather than a decreased response to each face stimulus, accounted for the graded categorization responses as found in Experiment 1. This was supported by (1) the absence of neural responses to faces that participants failed to categorize explicitly in Experiment 2 and (2) equivalent amplitudes and spatio-temporal signatures of neural responses to behaviorally categorized faces across presentation rates. Overall, these observations provide original evidence that high-level visual categorization of faces, starting at about 100 ms following stimulus onset in the human brain, is variable across observers tested under tight temporal constraints, but occurs in an all-or-none fashion.